Range-separated double-hybrid density-functional theory applied to periodic systems.

نویسندگان

  • Giuseppe Sansone
  • Bartolomeo Civalleri
  • Denis Usvyat
  • Julien Toulouse
  • Kamal Sharkas
  • Lorenzo Maschio
چکیده

Quantum chemistry methods exploiting density-functional approximations for short-range electron-electron interactions and second-order Møller-Plesset (MP2) perturbation theory for long-range electron-electron interactions have been implemented for periodic systems using Gaussian-type basis functions and the local correlation framework. The performance of these range-separated double hybrids has been benchmarked on a significant set of systems including rare-gas, molecular, ionic, and covalent crystals. The use of spin-component-scaled MP2 for the long-range part has been tested as well. The results show that the value of μ = 0.5 bohr(-1) for the range-separation parameter usually used for molecular systems is also a reasonable choice for solids. Overall, these range-separated double hybrids provide a good accuracy for binding energies using basis sets of moderate sizes such as cc-pVDZ and aug-cc-pVDZ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals.

Hybrid functionals are responsible for much of the utility of modern Kohn-Sham density functional theory. When rigorously applied to solid-state metallic and small band gap systems, however, the slow decay of their nonlocal Hartree-Fock-type exchange makes hybrids computationally challenging and introduces unphysical effects. This can be remedied by using a range-separated hybrid which only kee...

متن کامل

Double-hybrid density-functional theory made rigorous.

We provide a rigorous derivation of a class of double-hybrid approximations, combining Hartree-Fock exchange and second-order Møller-Plesset correlation with a semilocal exchange-correlation density functional. These double-hybrid approximations contain only one empirical parameter and use a density-scaled correlation energy functional. Neglecting density scaling leads to a one-parameter versio...

متن کامل

Plane-wave Pseuclopotential Density Functional Theory periodic Slab Calculations of NO Adsorption on Co(111) Surface

Plane-wave pseudopotential Density Functional Theory (OFT) periodic slab calculations were performed usingthe giteralized gradient approximation (GHA) to investigate the adsorption of nitric oxide(NO) on the (I II)surface of Cu. Copper rface was stimulated using th P 'odic Slab Method consisting of Five atomic Layers.Four different adsorption saes (Atop. Bridge, RCP Hollow, and FCC Hollow) were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 10  شماره 

صفحات  -

تاریخ انتشار 2015